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ABSTRACT
We study the problem of generating synthetic graphs that resemble

real-world directed graphs in terms of their degree correlations. In

order to capture degree correlation speci�cally for directed graphs,

we de�ne directed 2K (D2K) as those graphs with a given directed

degree sequence (DDS) and a given target joint degree and a�ribute

matrix (JDAM). We provide necessary and su�cient conditions for

a target D2K to be realizable and we design an e�cient algorithm

that generates graph realizations with exactly the target D2K. We

apply our algorithm to generate synthetic graphs that target real-

world directed graphs (such as Twi�er), and we demonstrate its

bene�ts compared to state-of-the-art construction algorithms.

CCS CONCEPTS
•Mathematics of computing →Graph algorithms;

KEYWORDS
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1 INTRODUCTION
It is o�en desirable to generate (or “construct”) synthetic graphs

that resemble real-world networks w.r.t. certain properties of in-

terest. For example, researchers o�en want to simulate a process

on a realistic network topology and they may not have access to

a real-world network; or they may want to generate several dif-

ferent realizations of graphs of interest. In this paper, we focus

speci�cally on directed graphs that appear in many application

scenarios including, but not limited to, online social networks such

as Twi�er (e.g., referring to the following, re-tweeting or actual

communication among users).

�ere is a large body of work, in classic literature [11],[23],[22],[31],

as well as more recently (dK-series [27],[28], PAM [12]), on gener-

ating realizations of undirected graphs that exhibit exactly some

target structural properties such as a given degree distribution or

a given joint degree matrix. In this paper, we adopt the dK-series
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framework [27],[28], which provides an elegant way to trade o� ac-

curacy (in terms of graph properties) for complexity (in generating

graph realizations). Construction of dK-graphs is well understood

(i.e., e�cient algorithms and realizability conditions are known) for

1K (graphs with a given degree distribution) and 2K ( graphs with a

given joint degree matrix). For d > 2 (which is necessary for captur-

ing the clustering exhibited in social networks), we recently proved

that the problem is NP-hard [8] and we also developed e�cient

heuristics [20]. In contrast, construction is not well-understood

for directed graphs: results are known for construction of graphs

with a target directed degree sequence [18], [17], but the notion of

directed degree correlation, or directed dK-series for d ≥ 2, has not

been previously addressed.

In this paper, we address this problem. We de�ne two notions

of degree correlation in directed 2K graphs: primarily directed 2K
(D2K), and secondarily its special case D2Km. D2K includes the

notion of directed degree sequence (DDS) and builds on an old

trick (mapping directed graphs to bipartite undirected graphs) to

also express degree-correlation via a joint degree-a�ribute matrix

(JDAM) for the bipartite graph. �is problem de�nition lends itself

naturally to techniques we previously developed for undirected
2K [20], which we exploit to develop (i) necessary and su�cient

realizability conditions and (ii) an e�cient algorithm that constructs

graph realizations with the exact target D2K. Our D2K approach

advances the state-of-the-art in modeling and simulation of realistic

directed graphs, especially in the context of online social networks.

�e outline of the rest of the paper is as follows. Section 2 sum-

marizes related work. Section 3 de�nes the Directed 2K problem

(D2K and its special case D2Km). Section 4 provides realizability

conditions for D2K and an e�cient algorithm for constructing such

realizations. Section 5 applies the algorithm to construct directed

2K graphs that resemble real world graphs, and demonstrates the ad-

vantages of our approach compared to state-of-the-art approaches.

Section 6 concludes the paper.

2 RELATEDWORK
We adopt the systematic framework of dK-series [27], which was in-

troduced to characterize the properties of an undirected graph using

a series of probability distributions specifying all degree correla-

tions within d-sized, simple, and connected subgraphs of a given

graph G. In this framework, higher values ofd capture progressively

more properties of G at the cost of more complex representation

of the probability distribution. �e dK-series exhibit two desired

properties: inclusion (a dK distribution includes all properties de-

�ned by any d ′K distribution, ∀d ′ < d and convergence (nK, where

n = |V | speci�es the entire graph, within isomorphism).



We are interested in graph construction approaches that pro-

duce simple graphs that exhibit an exact target distribution; this

is di�erent from the stochastic approach presented by [10] or the

con�guration model in [1].

0K Construction. 0K describes graphs with prescribed number

of nodes and edges. �is notion translates to simple Erdős-Rényi

(ER) graphs with �xed number of edges. �ere is a simple extension

of ER graphs to generate not just undirected but directed graphs as

well, which we will use in our evaluation.

1K Construction. Degree sequences are equivalent to 1K as

de�ned in the dK-series. Because degree sequences have been

studied since the 1950s, we only focus on the most relevant results.

�e realizability conditions for degree sequences were given by the

Erdős-Gallai theorem [11], and �rst algorithm to produce a single

realization by Havel-Hakimi [23],[22]. More recently, importance

sampling algorithms were proposed in [5] and [7].

2K Construction. A Joint Degree Matrix (JDM) is given by the

number of edges between nodes of degree i (Vi ) and j (Vj ) as in [2]:

JDM(i, j) =
∑
u ∈Vi

∑
v ∈Vj

1{(u,v)∈E } (1)

Realizability conditions for undirected 2K were provided in [2].

Algorithms for generating realizations of a target JDM were pro-

vided in [6], [20] and [30]. �e algorithms presented in [2] and

[30] are designed to only produce restricted realizations with an

additional property called Balanced Degree Invariant (BDI). In [6]

and [20], the algorithms have non-zero probability to produce any

realization of a 2K distribution. An importance sampling algorithm

was introduced in [4].

In prior work [20], we de�ned the notion of Joint Degree and

A�ribute Matrix (JDAM), which extends JDM for graphs with a

single node a�ribute. It captures the number of edges between

nodes of degree i , a�ribute value p (V{i,p }) and degree j, a�ribute

value q (V{i,q }). Known results can be easily applied from the JDM

problem including sampling.

JDAM({i,p}, {j,q}) =
∑

u ∈V{i,p}

∑
v ∈V{j,q}

1{(u,v)∈E } (2)

�e space of simple graph realizations of 1K distributions is

connected over double edge swaps preserving degrees [31] and

a similar result was shown in [6] or [2] for 2K with double edge

swaps that preserve degrees and the joint degree matrix. �ese

swaps allow the use of MCMC to generate approximate probability

samples for 1K and 2K. However, fast mixing for the MCMC has

not been proved in general, only for special classes of realizations

[16] [15].

dK, d > 2 Construction. While algorithms of known time

complexity exist for d ≤ 2, Monte Carlo Markov Chain (MCMC)

approaches are typically used for d > 2. Several a�empts were

made to �nd polynomial time algorithms to produce 3K graphs [27]

or 2K realizations with prescribed (degree-dependent) clustering

coe�cient [19],[20] and [28], but we recently proved that even the

realizability check for these inputs is NP-Complete in [8].

Annotated graph construction was proposed in [9] that con-

sidered degree correlations, however the proposed construction

method will generate graphs with self-loops or multi-edges initially.

An additional step removes these extra edges to make the graph

simple and �nally the largest connected component of the graph is

returned as the constructed realization.

Beyond the undirected dK-series framework [27], we discuss

related work for bipartite and directed degree sequences in the

following section, as part of our description of directed dK-series.

3 DIRECTED 2K PROBLEM DEFINITION
In this paper, we follow the previous taxonomy, but we de�ne the

dK-series for directed graphs with given properties.

Directed 0K. As mentioned in Section 2, it is trivial to extend

ER model for directed graphs. In addition, we consider the UMAN

model [24], which captures the number of mutual, asymmetric, and

null dyads in a graph. One can think about UMAN as 0K distribution

with �xed numbers of mutual and unreciprocated edges.

Directed 1K. In an undirected graph G, a node v has degree

d(v), and the degree sequence is simply:

DS = {d1,d2, ...d |V |} (3)

In a directed graph, a node v has both in and out degree and the

directed degree sequence can be expressed in the following way. An

example is shown on Fig. 1-top le�.

DDS = {(dinv ,d
out
v ),v ∈ V } (4)

It is well known from Gale’s work [18], that any directed graph

can be mapped 1-1 to an undirected bipartite graph, where each

node v of the directed graph is split in two nodes vin and vout ,

and the undirected edges across the two (in and out) partitions of

the bipartite graph correspond to the directed edges in the directed

graph. A self loop (v,v) in the directed graph corresponds to a “non-

chord” (vin ,vout ) in the bipartite graph, and is shown in dashed

line on Fig. 1-le�-bo�om.

Construction algorithms are known for a bipartite degree se-

quence with [18], or without non-chords, and therefore for the

corresponding directed graphs with or without [17] self-loops, re-

spectively. More recently, an importance sampling algorithm was

provided for D1K in [25].

Directed 2K. Our goal in this paper is to go beyond just directed

degree sequence and capture degree correlation, and there are two

ways to go about it.

D2Km:1 Joint (Directed) Degree Matrix
JDM((dini ,d

out
i ), (dinj ,d

out
j )).

One way is to work directly with the directed graph, see Fig.

1-top right. We partition nodes by both their in and out degrees

(dinv ,d
out
v ), and we can de�ne the joint degree matrix to capture

the number of edges JDM((dini ,d
out
i ), (dinj ,d

out
j )), between nodes

with (dini ,d
out
i ) and (dinj ,d

out
j ). �is is shown on the top of Fig. 1.

�is is a natural extension of the JDM in the undirected case and

captures a restrictive notion of degree correlation. However, there

is no previously known algorithm that can provably generate graph

realizations with this target JDM. For example, a naive extension

of our own 2K construction algorithm [20], from undirected to

directed graphs, does not work all the time, although it is still a

good heuristic for sparse graphs.

1
Although presented �rst, D2Km is actually a special (more restrictive) case of D2K

(directed degree correlation) and stands for “D2K modi�ed”.



Figure 1: De�ning Directed 2K, to capture degree correlations in a directed graph. Top le�, Directed 1K: Directed graph with
a given degree sequence (DDS). Bottom le�, Bipartite 1K: Mapping of the previous to a Bipartite undirected graph with a
given bipartite degree sequence; non-chords in the bipartite graph (shown in dashed line) correspond to self-loops in the
directed graph. Bottom right, Directed 2K (D2K): Joint-Degree-Attribute Matrix (JDAM), where nodes of the bipartite graph
are partitioned by their degree-and-(in or out) attribute or equivalently the in and out degree correlations of the directed graph.
Top right: Directed 2Km: Joint Degree Matrix (JDM) for directed graphs, where nodes are partitioned according to their (in
degree, out degree).

D2K: Joint (Directed) Degree-Attribute Matrix JDAM(deдree,
in or out).

Another natural approach would be to simply consider the de-

gree correlations between in and out degrees in a directed graph, as

shown in Fig.1-bo�om rightmost matrix. Alternatively it is possible

to work with the equivalent representation of a directed graph as

an undirected bipartite graph without non-chords (Fig. 1-bo�om

le�), and de�ne degree correlations there. We partition in and out

nodes by their degree, essentially considering that nodes in the

bipartite graph can have an a�ribute that takes two values, “in” or

“out.” We can now de�ne degree correlation using the Joint Degree-

A�ribute Matrix (JDAM, which we �rst de�ned in [20]), as shown

on Fig. 1 - bo�om right. �is leads to a JDAM with two a�ribute

values, such that ∀i, j = 1, ...,dmax degrees and p ∈ {in,out} at-

tribute values JDAM({i,p}, {j,p}) = 0, i.e., because the bipartite

graph has no edges between two “in” or ”‘out” nodes. Furthermore,

the number of non-chords will be noted as f ({i,p}, {j,q}), where

i, j ∈ {1, ...,dmax } and p , q ∈ {in,out}; f can be computed by

passing through the directed degree sequence once and counting

the number entries with in-degree i and out-degree j.
�is notion of bipartite JDAM has all the properties known for

JDM and JDAM , since it is a special case of JDAM that we �rst

de�ned in [20]. �is includes su�cient and necessary conditions for

realizability, construction algorithms, existence of Balanced Degree

Invariant realizations, importance sampling algorithm extensions

from JDM , connectivity of space of realizations over JDAM pre-

serving double-edge swaps and MCMC properties. However, we

have to show for D2K, that the non-chords described by the directed

degree sequence can be added as well.

Relation of the two problems. An overview of the problems

of interest is provided on Fig. 1. One di�erence between the two 2K

problems is that D2Km provides a more restrictive notion of degree

correlation than D2K since it partitions nodes by two numbers

(din ,dout )) vs. one number dinv or doutv . D2Km can essentially be

obtained as a special case of D2K by further partitioning nodes with

the same din by their out degree as well. �erefore, D2Km can be

solved by the same algorithm that solves D2K. For the rest of the

paper, we will consider the D2K problem.

Directed 2K (D2K) Problems: Given targets JDAM� and DDS� :

• Realizability: Decide whether this D2K is realizable, i.e.,
whether there exist graphs with the target properties.

• Construction: Design an algorithm that constructs (i.e.,
generates) at least one such graph realization.

• Sampling: Sample, e.g., uniformly, from the space of all

graph realizations with the target D2K.



4 REALIZABILITY AND ALGORITHM
In this section, we take as input the two target properties, namely

the target JDAM
�({i,p}, {j,q}) with two a�ribute values and the

DDS
�

, and construct a directed 2K-graph with N nodes that ex-

hibits exactly these target properties. In this section, we use the

bipartite representation of directed graphs as in Figure 1. �is en-

ables us to simplify our algorithm description and show the relation

to our previous construction algorithm for undirected graphs [20].

More speci�cally, we remove directionality of the edges and only

handle a partition with non-chords. Since the bipartite represen-

tation is equivalent to a directed graph, the following algorithm

could be rephrased to construct directed graphs without the use of

the bipartite representation.

Recall that in the D2K de�nition, nodes are partitioned into K
parts Vk ,k = 1...K , according to the distinct din = i or dout = j
they exhibit and JDAM({i,p}, {j,q}) is indexed accordingly. For

example, on Fig. 1 bo�om-right, each node belongs to one of four

parts V{0,in } = {v ∈ V : din = 0}, V{1,out } = {v ∈ V : dout = 1},

V{1,in } = {v ∈ V : din = 1}, V{2,in } = {v ∈ V : din = 2}, and the

JDAM is 3x3 (by removing rows and columns corresponding to any

V{0,p } , since there are no edges using these parts of any partition).

4.1 Realizability
Not all target properties are realizable (or “graphical”): there does

not always exist at least one simple directed graph with those exact

properties. Necessary and su�cient conditions for a target D2K, i.e.,
JDAM

�({i,p}, {j,q}) and DDS
�

, to be realizable are the following.

I ∀i, j,p : JDAM({i,p}, {j,p}) = 0

II ∀i, j,p,q, if JDAM({i,p}, {j,q}) > 0,

JDAM({i,p}, {j,q}) +f ({i,p}, {j,q}) ≤ |V{i,p } | · |V{j,q } |

III ∀i,p : |V{i,p } | =
∑
{j,q }

JDAM ({i,p }, {j,q })
i = |{(dinv ,d

out
v ),

v ∈ DDS |(dinv = i ∧ p = “in′′) ∨ (doutv = i ∧ p = “out ′′)}|

�ese are generalizations of the conditions for an undirected

JDM, JDAM to be realizable, and they are clearly necessary. �e

�rst condition states that every realization of the target JDAM

is bipartite, i.e., there should be no edges between two nodes

both in “in” or “out” parts. �e second condition considers edges

between two (“in” and “out” ) parts and states that the number

of edges de�ned by the JDAM({i,p}, {j,p}) plus the number of

non-chords (f ({i,p}, {j,q})) should not exceed the total number

of edges possible in a complete bipartite graph across the two

parts. �is can be seen in the example of Fig. 1: given higher

JDAM(2, “in′′, 1, “out ′′) = 4 would result using a non-chord or

even higher values would create multi-edges (with same number of

nodes). �e last condition ensures that the target JDAM and the tar-

get DDS are consistent: the number of nodes with in (or out) degree

i should be the same whether computed using the JDAM or the DDS.

In the example of Fig. 1: |V{1,“in′′ } | = 2 since there are two nodes

in DDS with in degree 1 and

∑
{j,q }

JDAM ({1,“in′′ }, {j,q })
1

= 2. �e

DDS also trivially ensures that the number of nodes is going to be

an integer.

Necessity of these conditions for simple graph construction are

trivial. Su�ciency is established via the constructive proof of the

algorithm presented next.

4.2 Algorithm
Algorithm 1 can generate a simple directed graph for given DDS� ,

JDAM� if the inputs are realizable.
2

Algorithm 1: D2K

Input: DDS� , JDAM�

Initialization:

a: Create G with nodes, partition, stubs using DDS�

b: Add non-chords to G using DDS�

Add Edges:

1: for every pair ({i,p}, {j,q}) of partition:

2: while JDAM({i,p}, {j,q}) < JDAM�({i,p}, {j,q})
3: Pick any nodes u (from V {i,p}), v (from V {j,q})

s.t. (u,v) is not a non-chord or existing edge

4: if u does not have free stubs:

5: u ′: node in V {i,p} with free stubs

6: neighbor switch for u using u ′

if neighbor switch fails, u := u ′

7: if v does not have free stubs:

8: v ′: node in V {j,q} with free stubs

9: neighbor switch for v using v ′

if neighbor switch fails, v := v ′

10: add edge between (u, v)

11: JDAM({i,p}, {j,q}) ++; JDAM({j,q}, {i,p}) ++;

Transform bipartite G to directed graph

Output: simple directed graph

First, we create a set of nodes V , where |V | = 2 · |DDS|, we

assign stubs to each node and partition nodes, as speci�ed in the

target directed degree sequence DDS
�

. �e stubs are originally free,

i.e., they are only connected to one node. We also initialize all

entries of JDAM to 0 and the non-chords between nodes according

to DDS
�

. �en the algorithm proceeds by connecting two nodes

(one from “in” and one from “out” side), thus adding one edge (u,v)
at a time, that (i) are not previously connected to each other (ii) do

not have a non-chord between them (to avoid self loops) and (iii)

for whom the corresponding entry in the JDAM has not reached

its target. �e challenge lies in showing that the algorithm will

always be able to make progress, by adding one edge at a time,

until all entries of the JDAM reach their target, when the algorithm

terminates. Indeed, there may be cases (2-5 in Fig.3), where u, v
or both do not have free stubs. Even in those cases, however, we

will be able to perform JDAM-preserving edge rewirings (called

neighbor switch [20]: remove a neighbor t of v such that t is not

a neighbor of v ′ and add edge (t ,v ′)) to free stubs and then add

the edge (u,v) (cases 2-3); or we will be able to add another edge

(u ′,v), (u,v ′) (case 4); or (u ′,v ′) (case 5a) in Fig.3. Next, we prove

that this is, indeed, always the case.

2
Here, we follow the style of proof and algorithm for construction of undirected graphs

[20]. In addition, other results for JDM construction could be extended for directed 2K

as well, such as the proof in [6].



Figure 2: Example of runningAlgorithm1 to construct a graph realizationwith the targetD2K speci�ed in Fig. 1. �e algorithm
starts by initializing a bipartite graph with non-chords and stubs (initialization). In each iteration, one new edge is added by
connecting two stubs. Depending on the case, a local edge rewiring may need to be performed �rst, or a new pair of nodes
may be chosen, before the edge can be added. In this example, the algorithm terminates a�er four iterations by generating a
realization that is di�erent from Fig. 1 (the directed cycle is reoriented).

Figure 3: Some of the possible cases, while attempting to add edge (u,v) in Algorithm 1.

Example. In Fig. 2, we show an example of running Algorithm

1 to construct graphs with the target D2K speci�ed in Fig.1. De-

pending on how the algorithm chooses (u,v) pairs, cases 2-5a can

appear. For example, in iteration 3, if we try to add edge (cout ,bin ),
we can simply add the edge. However, (dout ,bin ) would be an-

other possible choice and cout a candidate for neighbor switch,

but the neighbor switch is not possible due to non-chord and this

results in a Case 4; the algorithm proceeds by adding (cout ,bin )
edge, without additional rewiring.

Proof. While the construction has not reached the target, there

is a pair {i,p},{j,q} s.t. JDAM({i,p}, {j,q}) < JDAM�({i,p}, {j,q}).
Condition II guarantees that two nodes, (u,v), can always be cho-

sen to add an edge, i.e., there is no edge or non-chord between them

(Alg. 1, this is line 3). Condition III ensures that at least one node

exists with a free stub in V{i,p } and V{j,q } . For more details please

see Lemma 2 and 3 in [20].

Next, we show that every iteration can proceed by adding a new

edge to the graph (i.e., we will not get stuck). �e cases are depicted

on Fig. 3.

Case 1. Add a new edge between two nodes with free stubs, no

local rewiring needed.

Case 2. Add a new edge between a node v without free stubs

and a node u with free stubs where neighbor switch is possible for

v without using any non-chords.

Case 3. Add a new edge between two nodes without free stubs

where neighbor switches are possible for both nodes without using

any non-chords.

Case 4. Add a new edge between a node v without free stubs

and a node u with free stubs (or without free stubs where neighbor

switch is possible) where neighbor switch is not possible for v
using v ′ without using any non-chords. In this case v ′ has the

same neighbors as v except the one for which it has an assigned

non-chord. In this case v ′ is not connected to u and it is possible to

add {v ′,u} edge ({v ′,u} is clearly not an edge since then u would

be also connected to v or v could have done a neighbor switch).

Case 5. Add a new edge between two nodes (u,v) w/out free stubs,

where neither can do a neighbor switch with u ′ and v ′ respectively.

We have to break this case into two subcases, based on whether

two nodes u ′,v ′ w/out free stubs form a non-chord or not.

Case 5a. u ′,v ′ is not a non-chord. �is means that we can add

a new edge between u ′,v ′. It is easy to see that u ′,v ′ edge is not

already present, because otherwise u and v could have performed

a neighbor switch.



Case 5b. u ′,v ′ is a non-chord. �is case is not possible when u,v
are not able to perform neighbor switches at the same time. Without

loss of generality, let’s say that u connects to all the neighbors of

u ′ and node v ′. �is means that no neighbor switch is available for

u. If we want to construct v such that it can’t perform a neighbor

switch with v ′, we need v to connect all of the neighbors of v ′;
however, this would include u as well, and clearly that edge doesn’t

exist. Contradiction.

�is concludes our proof and shows that the algorithm will termi-

nate and will generate a bipartite graph a�er adding

∑ JDAM�(i, j)
2

=

|E | edges. Finally, the bipartite graph can be mapped to the corre-

sponding directed graph, as depicted on Fig.1. �

Running Time. �e time complexity of the above algorithm

is O(|E | · dmax ). In each iteration of the while loop, one edge is

always added, until we add all |E | edges. However, we have to

consider how much time it takes to pick u,v nodes. �ere could

be neighbor switches that remove previously added edges or add

edges between the two parts. If we naively looked up node pairs,

it would become an issue for dense graphs. A simple solution is

to keep track of JDAM�({i,p}, {j,q}) − JDAM({i,p}, {j,q}) many

node pairs where edges can be added in a set P . For every pair

of {i,p}, {j,q}, it is possible to initialize P by passing through

O(JDAM�({i,p}, {j,q})+ f ({i,p}, {j,q})) node pairs. A new (u,v)
node pair can simply be picked as a random element from P . If a

neighbor switch for u ∈ V{i,p } (and similarly to v), rewires a neigh-

bor t ∈ V{j,q } , then P = P \ {u ′, t} ∪ {u, t} maintains available

node pairs in P . Note: {u ′, t} might not be in P . �is ensures that

|P | ≥ JDAM�({i,p}, {j,q}) − JDAM({i,p}, {j,q}). �ese simple

set operations can be done in constant time, and building P takes

O(E+V ) time over all partition class pairs. Finally we remove (u,v)
from P , which could be di�erent from the starting pair if Case 4 or

5a occurs.

It is also possible to keep track of nodes with free stubs in a

queue for each part of the partition. Once a node has no free stubs,

it will remain so, except during neighbor switches. �is allows

selection of candidates for neighbor switches, or new edges when

neighbor switches are not possible, in constant time. However, it

still takes O(dmax ) to check whether a node with free stubs is a

good candidate for neighbor switch, because the sets of neighbors

can be almost the same length, which takes linear time in the size of

sets. In the worst case, there is a possibility for at most two neighbor

switches per new edge, hence the running time is O(|E | · dmax ).

�e directed graph can be constructed from the bipartite rep-

resentation by collapsing nodes with non-chords and assigning

directions to edges appropriately, this takes O(E +V ) time.

4.3 Space of Realizations
�e algorithm can produce any realization of a realizable D2K, with

a non-zero probability. Recall that the order in which the algorithm

adds edges is unspeci�ed. Considering all possible edge permu-

tations as the order in which to add the edges, the permutations

where no neighbor switch is required correspond to all the possible

realizations.
3

Unfortunately, the remaining orderings are di�cult

3
In [20], it was shown that given JDMs for every non-isomorphic undirected seven

node graphs, the algorithm was indeed able to generate every realization.

Figure 4: Two realizations with the same degree sequence
and JDAM. �ere is no JDAM preserving double-edge swap
that would not use any self-loops and the triangularC6 [13]
swaps are not preserving JDAM.�is example shows that the
edges along the directed four-cycle must change their direc-
tion simultaneously. �erefore, the known swaps that were
su�cient for undirected 2K or directed degree sequences are
not su�cient for preserving the directed 2K.

to characterize, thus the current algorithm cannot sample uniformly

from all realizations with a target D2K during construction.

Another way to sample from the space of graph realizations

with a target D2K is by edge rewiring, a�er constructing one such

realization. �is method is typically used by MCMC approaches

that transform one realization to another by rewiring edges so as to

present the target properties. On the positive side, D2K is a special

case of an undirected JDAM, and thus inherits the property that

JDAM realizations are connected via 2K-preserving double-edge

swaps [6],[2] if non-chords are allowed (equivalently, self-loops in

directed graphs). On the negative side, we cannot use the known

swaps to sample from the space of simple directed graphs.

It is known that the space of simple realizations of directed degree

sequences is connected over double edge swaps, that preserve (in

and out) degrees, and triangular C6 swaps [13]. Triangular C6

swaps are necessary in some cases where the di�erence between

two realization is the orientation of a directed three-cycle: in this

case, the orientation of the cycle has to be reversed in a single step.

�e su�ciency of these two types of swaps was shown in [13]. �e

necessity of these swaps also carries over to (simple) directed 2K

realizations. However, Fig. 4 shows a counterexample: a directed

four-cycle where the classic swaps are not su�cient to transform

one realization to the other, thus requiring a more complex swap.

It remains an open question whether tight upper bounds can be

derived on the swap size for Directed 2K realizations.
4

5 EVALUATION ON REAL-WORLD GRAPHS
5.1 Datasets
We have used examples of directed graphs for our experiments

from SNAP [26]: p2p-Gnutella08, Wiki-Vote, AS-Caida, Twi�er. We

have chosen these networks in order to represent several di�erent

sizes and generating processes for directed graphs.
5

We removed

4
�ere are possibly other cases where more complex swaps are necessary and include

more edges at once, for example larger directed cycles with speci�c in/out degree

order. In this paper, we do not provide tight upper bounds on the number of self-loops

or the size of swaps required, but we do emphasize that no multi-edges are required

and the number of self-loops are of course bounded by |N |.
5
While generating graphs of larger sizes would be feasible using Algorithm 1, comput-

ing all the properties mentioned in 5.2 would not be practical.



Table 1: Graphs

Name #Nodes #Edges Generation (sec)

p2p-Gnutella08 6,301 20,777 0.258

Wiki-Vote 7,115 103,689 0.941

AS-Caida 26,475 57,582 0.923

Twi�er 81,306 1,768,135 21.292

self-loops or multi-edges from these graphs, since our goal is to

produce simple graphs and this step ensures that the measured

inputs from these graphs will be realizable using di�erent directed

graph construction methods (0K, UMAN, 1K, 2K, 2Km).

AS-Caida has edge labels according to the relationship between

two ASes (peer, sibling, provider, customer), however provider and

customer edges describe the same relation from the opposite point

of view. We have modi�ed the AS-Caida network by removing

customer relations between ASes. �e a�ect of the mutual edges -

which would be present using both provider and customer relations

- will be visited again in our discussion. In [9], this graph was

also considered with the relations included, however during our

construction, we only use directed dK-series as described before in

Section 3.

A summary of the �nal graphs used in our experiments is shown

in Table 1. We also report the average time to generate realizations

using D2K for these example networks on a laptop with Intel Core

i7 6700HQ processor. Interestingly, the time to generate realizations

based on Wiki-Vote and AS-Caida are similar, although the former

has twice the edges; this is because the AS-Caida graph needs a

larger number of neighbor switches and time to transform the

bipartite representation to a directed graph.

5.2 Properties
In our results, we evaluate the performance of D2K graph generators

in terms of properties associated with directed graphs. While the

size of the generated graphs are maintained (number of nodes and

edges), there are many other properties one could investigate. First,

we use Degree Distributions and Degree Correlations. �ese are

the ones expected to be exactly matched by de�nition. In addition,

we consider additional properties such as shortest paths, spectrum,

strongly connected components, betweenness centrality, and k-core

distribution. Finally, to measure how some of the local structures

are preserved, we use dyad and triad censuses, dyad-wise shared

partners, average neighbor degree, and expansion.

�e dyad census counts the di�erent con�gurations for every

pair of nodes: ”mutual” - edges in both direction, ”asymmetric”

- edge only in one direction and ”null” - no edge present. �e

triad census counts the non-isomorphic con�guration for every

triplet of nodes. A complete list of con�gurations and naming

conventions can be found in [24]. Con�gurations are identi�ed by

three numbers (mutual, asymmetric, and null counts) and a le�er

in case of di�erent non-isomorphic con�guration with the same

number of edges. For example ”003” is a triplet of nodes where

none of the edges are present, ”030C” is a directed three-cycle and

”300” is a triplet of nodes where all directed edges are present.

Shared partners for pairs of nodes can be de�ned in three ways

for directed graphs: using independent two-paths, using shared

outgoing neighbors or using shared incoming neighbors between

pairs of nodes [29]. Dyad-wise shared partners (DSP) count node

pairs by the number of shared partners appearing in a network.

Average neighbor degree captures the average degree of a node’s

neighbors, and we split this property for in - and out degrees. Simi-

larly, we refer to expansion for directed graphs as the ratio of the

�rst hop and second hop neighborhoods’ sizes going out, or coming

in to a node. �ese properties capture similar aspects of a network,

but expansion excludes any mutual edges or edges between nodes

in the �rst hop neighbors.

Some of the above properties are also used by Orsini et. al.

[28] to study the convergence of dK-series over di�erent types

of undirected networks. We have included some properties that

are more natural for directed graphs, such as the triad census. �e

computation of the graph properties of interest is available as part of

NetworkX [21] or trivial to implement using the above description.

5.3 Results
We compare realizations generated by Directed ER (D0K), UMAN,

Directed Degree Sequence (D1K), Directed 2K, Directed 2Km with

the corresponding target properties captured on input graph (G).

We use 20 random instances for every construction method and

then average our results for each speci�c property. Due to space

constraints, we provide detailed results only for the Twi�er graph

in Figure 5, 6 and 7 and a brief overview of our observations over

di�erent input graphs.

Targeted properties. Fig. 5 shows that Directed Degree Dis-

tributions and Degree Correlations are captured by D2K, D2Km

as expected by de�nition. �is shows that our implementation is

correct. On the other hand, D0K, D1K and UMAN capture Degree

Correlations poorly, thus D2K graphs have a possibility to capture

other properties more accurately than D0K or D1K.

Dyad Census is not well captured for Twi�er, as we can see in

Figure 6. However, there are order of magnitude improvements

in the number of mutual edges between D2Km (123,040.4) and

D2K (3,628.7), D1K (2,155.95) or D0K (233.05). Of course, UMAN

preserves this property by de�nition.

Triad Census is surprisingly well captured by UMAN, the rea-

son being the exact match for the Dyad Census in the previous

point. On the other hand, a convergence can be seen between dK-

series generators with signi�cant improvements in dense triadic

structures from D1K to D2K and from D2K to D2Km.

Betweenness Centrality has no signi�cant improvements a�er

matching degree distributions with D1K in Twi�er; other examples

reached target closer with D1K. Interestingly UMAN performs

almost identically to D0K, even though the number of mutual edges

is signi�cantly di�erent.

Shortest Path Distribution has slow convergence to target

across di�erent methods, but the average shortest path is shorter

than the observed in G.

Strongly Connected Components (SCC) are not well cap-

tured by any of the dK-series generators and they tend to produce

realizations with a single giant SCC and many one-node compo-

nents without any intermediate sizes of SCCs.

K-Core Distribution is best captured by D2Km, and there is

a small improvement from D1K to D2K using Twi�er. However,



Figure 5: Results for Twitter graph: Directed Degree Distribution and Degree Correlation

Figure 6: Results for Twitter graph: Dyad-, Triad Census, Shortest Path Distribution, K-core distribution, Betweenness Cen-
trality

Figure 7: Results for Twitter graph: Expansion, Average Neighbor Degree, DSP and top 20 Eigenvalues

the dense core using D1K or D2K is almost an order of magnitude

lower core index.

Eigenvalues of the Twi�er graph are again best targeted by

D2Km. �ere is a di�erence between leading eigenvalues in graph

realizations of the other methods but starting at the second eigen-

value the di�erence between D1K and D2K quickly decreases.

Dyad-wise Shared Partners follow similar trends to other

properties, such that D2Km is signi�cantly more accurate than D1K

and D2K. D2K improves over D1K in terms of ”outgoing shared part-

ners” but that improvement decreases at ”independent two-paths”

and disappears at ”incoming shared partners”.



Table 2: Summary of results: showing improvements by tar-
geting more properties. Labels: ”.” - no improvement, ”-” -
decreased accuracy, ”+” - increased accuracy, ”Exact” - tar-
geted by construction.

Property UMAN→D1K D1K→D2K D2K→D2Km

Degree Distribution Exact Exact Exact

Degree Correlation + Exact Exact

Dyad Census - + +

Triad Census + + +

Betweenness Centrality + . .

Shortest Path Distribution + + +

Eigenvalues + + +

DSP + + +

Expansion + + +

Avg. Neighbor degrees + + Exact

S. Connected Components . . .

K-Core Distribution + . +

Expansion is best approximated by D2Km. D2Km also matches

Average Neighbor Degree exactly if marginalized by degrees as

in Figure 7. D2K also follows the general shape of these distribu-

tions but includes larger error, while D1K has systematic di�erence

compared to G.

Table 2 gives an overview of how well network properties are

targeted by the di�erent dK graph construction methods for the

remaining networks. �e Twi�er network showcased most of our

general �ndings, but individually some of these networks have

characteristics that makes them di�erent from Twi�er, e.g. p2p-

Gnutella08 does not contain any mutual edges. �e most interesting

question is whether D2K or D2Km capture network properties

more accurately compared to D1K. �e answer is yes in most cases,

but it might not be a signi�cant improvement in targeting certain

properties. Local structures are generally be�er captured by D2K

and even more precisely for D2Km, and global properties can be

matched moderately be�er depending on the original network.

5.4 Discussion
We have used several construction algorithms to generate random

graphs and we have observed be�er matching of many properties

for higher d in the directed dK-series. However, certain proper-

ties are not well captured by these methods, such as the Strongly

Connected Components. For some networks D1K could be a good

choice, since it captures many network properties. However, we

have shown that even in those cases properties related to �rst hop

neighbors are not expected to be captured.

While for most metrics the degree labeled construction (D1K,

D2K, D2Km) performs reasonably well, it is important to note that

these methods create a low number of mutual edges. On one side,

UMAN generates graphs with prescribed number of mutual edges

and otherwise ER random graph-like structures. On the other hand,

for larger (sparse) networks the degree labeled construction only

achieves a fraction of the target number of mutual edges. A solution

to this problem would be to generate D2K graphs with a number

of mutual edges. It is possible to design heuristics for this problem

but exact solutions might be di�cult to achieve. In addition, we

could consider for D2Km two matrices: one describing asymmetric

and another for mutual edges between nodes with given (in, out)

degrees.

We have also shown that �ner partitioning of nodes, by con-

sidering a�ribute values in addition to their degree, can help to

be�er describe graphs by their mixing matrix. D2Km is a very spe-

ci�c partition, that preserves average neighbor degrees for directed

graphs, which is a property that is given by 2K in the undirected

case. Graphs could be exactly �xed in the limit of the number of

parts in a partition; however, in our example this is not the case.

While there are parts of the partition with only a single node in

them, most of their edges go to other parts of the partition with

multiple nodes. �is results in a chance to construct distinct re-

alizations with minimum number of �xed edges across di�erent

realizations. It is an interesting question, how di�erent partitions

would a�ect the number of realizations. In prior work, it has been

shown how to approximate the number of realizations for a wide

class of degree sequences [3]. To the best of our knowledge, the

number of realizations for undirected 2K has not been characterized.

However, the relation between 1K, 2K and 3K realizations has been

shown by the number of possible edge rewirings in [27], which

gives an intuition on how more restrictive models shrink the space

of realizations. �is remains an open question for future work for

both undirected and directed JDM, JDAM construction.

�e hardness of degree labeled construction for undirected graphs

have been shown recently. �e realizability problem of undirected

2K with �xed number of triangles, 3K [8], and second order de-

gree sequences (degree and number of two hop neighbors) [14] are

NP-Complete. A relaxation of JDM partitions called “PAM” [12]

is believed to be NP-Complete and only solved for special cases.

More restrictive models (D2K with additional target properties) are

likely to lead to NP-Complete problems; however, for any partition

of nodes, construction is possible as long as the target JDAM is

realizable.

6 CONCLUSION
We have proposed a new approach for directed graph construction

by considering in and out degree correlations in addition to directed

degree sequences (directed 2K or D2K). We built a framework for

directed graphs similar to the dK-series. We could generate bi-

partite graphs with prescribed degree correlations using the Joint

Degree and A�ribute Matrix construction algorithms. We used

this property of JDAM construction and de�ned directed 2K as the

combination of JDAM and a directed degree sequence (representing

non-chords). To solve our D2K problem, we provide the neces-

sary and su�cient conditions for realizability of such inputs and a

simple, e�cient algorithm to generate simple realizations (without

self-loops) as well. �e uniform sampling from the space of these

realizations remains an open problem, as discussed in section 4.3.

In addition to directed 2K, we have de�ned D2Km, a special case

using additional node a�ributes. D2Km provides a more restricted

notion of directed 2K, that exactly captures average neighbor degree

of nodes marginalized by degree. In our experiments, we have

shown convergence for degree labeled directed graph construction

similar to the undirected case [28]: it shows that degree correlations

capture more information about graph structure and enable us to

generate graphs which more closely resemble real-life networks.



Overall, our D2K approach advances the state-of-the-art in mod-

eling and simulation of realistic directed graphs, especially in the

context of online social networks where degree correlations are

important.
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